帳號:guest(3.134.76.51)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目勘誤回報
作者:蘇威任
作者(英文):WEI-REN SU
論文名稱:設計硫化物多層結構應用於光電化學產氫之研究
論文名稱(英文):Design of Sulfide Based Photoanode with multi-layered for Photoelectrochemical Water splitting
指導教授:徐裕奎
指導教授(英文):Yu-Kuei Hsu
口試委員:蔡志宏
陳盈竹
口試委員(英文):Chih-Hung Tsai
Ying-Chu Chen
學位類別:碩士
校院名稱:國立東華大學
系所名稱:光電工程學系
學號:611025005
出版年(民國):112
畢業學年度:111
語文別:中文
論文頁數:96
關鍵詞:銅鋅錫硫硫化銦多層結構光電化學產氫
關鍵詞(英文):CZTSIndium SulfideMulti-layeredPhotoelectrochemistryHydrogen Production
相關次數:
  • 推薦推薦:0
  • 點閱點閱:7
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:5
  • 收藏收藏:0
在此研究當中,成功的利用幾項簡易的化學合成法,成長了硫化物多層結構當作光陽極,應用於光電化學分解水產氫。在第一部分的研究當中,是以CZTS作為主要吸光層,透過堆疊不同的材料,形成ZnS/CZTS/In2S3/ZnO並增益其光電化學特性。其中ZnO奈米線因其高表面積的特性,作為基底材料用於承載上層結構;由於CZTS與ZnO的能帶位置差距較大,兩材料間導電帶的位置落差也會較大,容易造成載子在傳輸中過多的損耗,因此在兩材料之間成長一能帶位置合適的In2S3作為緩衝層。最後,為了避免主要吸光層的CZTS與電解液接觸,在最外層成長了ZnS作為鈍化層。值得注意的是,在多層結構下,具有更佳的產氫效率,於電位為0.8V (Ag/AgCl )時有最大光電流6.4 mAcm-2,並且法拉第轉換效率也高達97 %。

而在第二部分研究當中,則是以In2S3作為主要吸光層,同樣利用推疊不同材料形成Ni(OH)2/In2S3/TiO2多層結構,增益其光電化學特性。於電位為0.6 V (Ag/AgCl ) 時有最大光電流3.4 mAcm-2,與純In2S3相比,光電流增益了1.5倍,這是因為TiO2與In2S3會形成type-II的異質結構,利於載子的傳輸;而Ni(OH)2是常見的觸媒,則是會降低水氧化所需能量,並提供活性位以利進行水氧化,提高了分解水效率。

In this study, a facile synthesis of multi-layered sulfide-based photoanode by a simple chemical method was successfully demonstrated for solar hydrogen generation. In the first part of the thesis, the ZnO NWs was used as a supporter to increase the surface area of CZTS shell layer as a light absorber and enhance the efficiency of hydrogen generation. At the same time, the In2S3 intermediate layer is used to compensate for the energy band offset. The ZnS outer layer acts as a passivation layer to suppress the charge recombination. More importantly, the photocurrent density of the ZnS/CZTS/In2S3/ZnO multi-layered photoanode reached 6.4 mAcm−2 at 0.8 V vs. Ag/AgCl electrode, which is 6.8 times that of pristine ZnO, and the Faradaic efficiency reached to 98%. The experimental results demonstrate that the multilayer structure illustrates efficient solar hydrogen production.


In the second part of the thesis, the photoanode composed of multi-layered structure Ni(OH)2/In2S3/TiO2 was also synthesis by a simple chemical method. The photocurrent density of 3.4 mAcm−2 was obtained, approximately 1.5 times that of bare In2S3 at 0.6 V vs. Ag/AgCl electrode. The main reasons may be the formation of type-II heterojunction between In2S3 and TiO2, and Ni(OH)2 provides active sites for water oxidation.
第一章 緒論 1
1-1 前言 1
1-2 太陽能 3
1-3 空氣質量 5
1-4 氫能 6


第二章 理論基礎與研究動機 7
2-1理論基礎 7
2-1-1光電化學 7
2-1-2電化學系統 7
2-1-3半導體能隙寬度 9
2-1-4水裂解 10
2-1-5 光電化學分解水產氫 11
2-2文獻回顧 13
2-2-1 銅鋅錫硫 (CZTS) 13
2-2-2氧化鋅 (ZnO) 14
2-2-3硫化銦 (In2S3) 14
2-3研究動機 15
2-3-1 ZnS/CZTS/In2S3/ZnO多層結構應用於光電化學產氫 15
2-3-2 Ni(OH)2/In2S3 /TiO2多層結構應用於光電化學產氫 16


第三章 實驗方法與步驟 17
3-1 ZnS/CZTS/In2S3/ZnO製備 17
3-1-1 基板的前置處理 17
3-1-2水熱法成長ZnO 18
3-1-3 SILAR法成長In2S3 19
3-1-4 旋轉塗佈法成長CZTS 19
3-1-5 SILAR法成長ZnS 20
3-2 Ni(OH)2/In2S3-In2O3/TiO2 製備 21
3-2-1 基板的前置處理 21
3-2-2 旋轉塗佈法成長TiO2薄膜 21
3-2-3 水熱法成長In2S3-In2O3 22
3-2-4 浸泡法成長Ni(OH)2 23
3-3材料分析 25
3-3-1場發射掃描式電子顯微鏡 25
3-3-2 X-ray 繞射儀 26
3-3-3 X射線光電子能譜儀 27
3-3-4拉曼光譜 28
3-3-5紫外線-可見光光譜儀 29
3-4光電化學分析 31
3-4-1線性伏安法 31
3-4-2外部量子轉換效率 32
3-4-3莫特蕭特基量測 32
3-4-4電化學交流阻抗頻譜分析 34
3-4-5氣相層析儀 36


第四章 實驗結果與討論 37
4-1 ZnS/CZTS/In2S3/ZnO多層結構應用於光電化學產氫 37
4-1-1 ZnS/CZTS/In2S3/ZnO多層結構FE-SEM分析 39
4-1-2 ZnS/CZTS/In2S3/ZnO多層結構XRD分析 40
4-1-3 ZnS/CZTS/In2S3/ZnO多層結構Raman分析 42
4-1-4 ZnS/CZTS/In2S3/ZnO多層結構XPS分析 43
4-1-5 ZnS/CZTS/In2S3/ZnO Absorption Spectra分析 45
4-1-6光電化學分析 47
4-1-7 ZnS/CZTS/In2S3/ZnO 照光條件下的線性伏安法 48
4-1-8 ZnS/CZTS/In2S3/ZnO 外部量子轉換效率 51
4-1-9 ZnS/CZTS/In2S3/ZnO 電化學阻抗分析 53
4-1-10 ZnS/CZTS/In2S3/ZnO 莫特蕭特基量測 55
4-1-11 ZnS/CZTS/In2S3/ZnO 氣體成分分析 57
4-1-12 總結 59
4-2 Ni(OH)2/In2S3/TiO2多層結構應用於光電化學產氫 61
4-2-1 Ni(OH)2/In2S3/TiO2多層結構FE-SEM分析 62
4-2-2 Ni(OH)2/In2S3/TiO2 接觸角分析 64
4-2-3 Ni(OH)2/In2S3/TiO2 XRD分析 66
4-2-4 Ni(OH)2/In2S3/TiO2 Raman分析 69
4-2-5 Ni(OH)2/In2S3/TiO2 XPS分析 70
4-2-6 Ni(OH)2/In2S3/TiO2之吸收光譜 72
4-2-7 Ni(OH)2/In2S3/TiO2 光電化學分析 74
4-2-8 Ni(OH)2/In2S3/TiO2線性伏安法 75
4-2-9 Ni(OH)2/In2S3/TiO2 外部量子轉換效率 78
4-2-10 Ni(OH)2/In2S3/TiO2 莫特蕭特基量測 79
4-2-11 Ni(OH)2/In2S3/TiO2 光強度調制光電流分析 81
4-2-12 Ni(OH)2/In2S3/TiO2 光強度調制光電壓分析 84
4-2-13 Ni(OH)2/In2S3/TiO2 氣體成分分析 86
4-2-14 總結 88


第五章 結論與未來展望 89


第六章 參考資料 91
[1] 太陽光頻譜。檢自 https://zh.m.wikipedia.org/wiki/File:Solar_Spectrum.png

[2] Riordan, C., & Hulstron, R. (1990, May). What is an air mass 1.5 spectrum?(solar cell performance calculations). In IEEE Conference on Photovoltaic Specialists (pp. 1085-1088). IEEE. gC3N4, and TiO2-gC3N4 systems for photocatalytic hydrogen production: Fundamentals and challenges. Renewable and Sustainable Energy Reviews, 149, 111095.

[3] Jiménez-Calvo, P., Caps, V., & Keller, V. (2021). Plasmonic Au-based junctions onto TiO2, gC3N4, and TiO2-gC3N4 systems for photocatalytic hydrogen production: Fundamentals and challenges. Renewable and Sustainable Energy Reviews, 149, 111095.

[4] Walter, M. G., Warren, E. L., McKone, J. R., Boettcher, S. W., Mi, Q., Santori, E. A., & Lewis, N. S. (2010). Solar water splitting cells. Chemical reviews, 110(11), 6446-6473.

[5] Prabeesh, P., Selvam, I. P., & Potty, S. N. (2018). Structural properties of CZTS thin films on glass and Mo coated glass substrates: a Rietveld refinement study. Applied Physics A, 124(3), 1-6.

[6] Lee, B. R., & Jang, H. W. (2021). β-In2S3 as water splitting photoanodes: promise and challenges. Electronic Materials Letters, 17(2), 119-135.

[7] Xin, H., Katahara, J. K., Braly, I. L., & Hillhouse, H. W. (2014). 8% Efficient Cu2ZnSn (S, Se) 4 solar cells from redox equilibrated simple precursors in DMSO. Advanced Energy Materials, 4(11), 1301823.

[8] Sharma, M. D., Mahala, C., & Basu, M. (2020). Photoelectrochemical water splitting by In2S3/In2O3 composite nanopyramids. ACS Applied Nano Materials, 3(11), 11638-11649.

[9] 吳致杰,“氧化鋅異質結構之合成及光電化學應用”,國立東華大學光電工程研究所碩士論文,2019

[10] Rong, J., Wang, Z., Lv, J., Fan, M., Chong, R., & Chang, Z. (2021). Ni (OH) 2 quantum dots as a stable cocatalyst modified α-Fe2O3 for enhanced photoelectrochemical water-splitting. Chinese Journal of Catalysis, 42(11), 1999-2009.

[11] 利用X-ray 看透材料原子排列結構世界
https://www.narlabs.org.tw/xcscience/cont?xsmsid=0I148638629329404252&sid=0K107352975420455604

[12] 俞姿宇,科學Oline X射線光子能譜學
https://highscope.ch.ntu.edu.tw/wordpress/?p=72999
[13] Gelderman, K., Lee, L., & Donne, S. W. (2007). Flat-band potential of a semiconductor: using the Mott–Schottky equation. Journal of chemical education, 84(4), 685.

[14] Chen, X., Tian, W., Li, S., Yu, M., & Liu, J. (2016). Effect of temperature on corrosion behavior of 3003 aluminum alloy in ethylene glycol–water solution. Chinese Journal of Aeronautics, 29(4), 1142-1150.

[15] Kambas, K. S. J. B. M., Spyridelis, J., & Balkanski, M. (1981). Far infrared and Raman optical study of α-and β-In 2 S 3 compounds. Physica Status Solidi. B, Basic Research, 105(1), 291-296

[16] Spasevska, H., Kitts, C. C., Ancora, C., & Ruani, G. (2012). Optimised In2S3 thin films deposited by spray pyrolysis. International Journal of Photoenergy, 2012.

[17] Digraskar, R. V., Sapner, V. S., Mali, S. M., Narwade, S. S., Ghule, A. V., & Sathe, B. R. (2019). CZTS decorated on graphene oxide as an efficient electrocatalyst for high-performance hydrogen evolution reaction. ACS omega, 4(4), 7650-7657.

[18] Lu, Y., Popescu, R., Gerthsen, D., Feng, Y., Su, W. R., Hsu, Y. K., & Chen, Y. C. (2022). Highly Efficient Recovery of H2 from Industrial Waste by Sunlight-Driven Photoelectrocatalysis over a ZnS/Bi2S3/ZnO Photoelectrode. ACS Applied Materials & Interfaces, 14(6), 7756-7767.

[19] 張澔軒,“沉積銅銦硫奈米顆粒於氧化鋅奈米線應用於光電化學分解水之研究”,國立東華大學光電工程研究所碩士論文,2017

[20] Wang, J., Zhang, P., Song, X., & Gao, L. (2014). Surfactant-free hydrothermal synthesis of Cu 2 ZnSnS 4 (CZTS) nanocrystals with photocatalytic properties. RSC advances, 4(53), 27805-27810.

[21] Aruna-Devi, R., Latha, M., Velumani, S., Santoyo-Salazar, J., & Santos-Cruz, J. (2019). Telescoping synthesis and goldilocks of CZTS nanocrystals. Materials Research Bulletin, 111, 342-349.

[22] Wang, H., Yasin, A., Quitoriano, N. J., & Demopoulos, G. P. (2019). Aqueous-Based Binary Sulfide Nanoparticle Inks for Cu2ZnSnS4 Thin Films Stabilized with Tin (IV) Chalcogenide Complexes. Nanomaterials, 9(10), 1382.

[23] Wang, X., Li, H., Zhang, J., Liu, X., & Zhang, X. (2020). Wedged ß-In2S3 sensitized TiO2 films for enhanced photoelectrochemical hydrogen generation. Journal of Alloys and Compounds, 831, 154798.

[24] Du, Y. L., Deng, Y., & Zhang, M. S. (2006). Variable-temperature Raman scattering study on anatase titanium dioxide nanocrystals. Journal of Physics and chemistry of Solids, 67(11), 2405-2408.

[25] Hall, D. S., Lockwood, D. J., Bock, C., & MacDougall, B. R. (2015). Nickel hydroxides and related materials: a review of their structures, synthesis and properties. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 471(2174), 20140792.

[26] Zhu, L., Lu, Q., Lv, L., Wang, Y., Hu, Y., Deng, Z., ... & Teng, F. (2017). Ligand-free rutile and anatase TiO2 nanocrystals as electron extraction layers for high performance inverted polymer solar cells. RSC advances, 7(33), 20084-20092.

[27] Thalluri, S. R. M., Martinez-Suarez, C., Virga, A., Russo, N., & Saracco, G. (2013). Insights from crystal size and band gap on the catalytic activity of monoclinic BiVO4. International Journal of Chemical Engineering and Applications, 4(5), 305.

[28] Li, Y., Wang, K., Huang, D., Li, L., Tao, J., Ghany, N. A. A., & Jiang, F. (2021). CdxZn1-xS/Sb2Se3 thin film photocathode for efficient solar water splitting. Applied Catalysis B: Environmental, 286, 119872.

[29] Ponomarev, E. A., & Peter, L. M. (1995). A generalized theory of intensity modulated photocurrent spectroscopy (IMPS). Journal of Electroanalytical Chemistry, 396(1-2), 219-226.

[30] Wang, G., Ling, Y., Lu, X., Zhai, T., Qian, F., Tong, Y., & Li, Y. (2013). A mechanistic study into the catalytic effect of Ni (OH) 2 on hematite for photoelectrochemical water oxidation. Nanoscale, 5(10), 4129-4133.

[31] Xu, D., Fu, Z., Wang, D., Lin, Y., Sun, Y., Meng, D., & feng Xie, T. (2015). A Ni (OH) 2-modified Ti-doped α-Fe 2 O 3 photoanode for improved photoelectrochemical oxidation of urea: the role of Ni (OH) 2 as a cocatalyst. Physical Chemistry Chemical Physics, 17(37), 23924-23930..

[32] Choi, Y., Baek, M., Zhang, Z., Dao, V. D., Choi, H. S., & Yong, K. (2015). A two-storey structured photoanode of a 3D Cu 2 ZnSnS 4/CdS/ZnO@ steel composite nanostructure for efficient photoelectrochemical hydrogen generation. Nanoscale, 7(37), 15291-15299.

[33] Altaf, C. T., Sahsuvar, N. S., Abdullayeva, N., Coskun, O., Kumtepe, A., Karagoz, E., ... & Sankir, N. D. (2020). Inverted Configuration of Cu (In, Ga) S-2/In2S3 on 3D-ZnO/ZnSnO3 Bilayer System for Highly Efficient Photoelectrochemical Water Splitting.

[34] Vishwakarma, M., Kumar, M., Hendrickx, M., Hadermann, J., Singh, A. P., Batra, Y., & Mehta, B. R. (2021). Enhancing the Hydrogen Evolution Properties of Kesterite Absorber by Si‐Doping in the Surface of CZTS Thin Film. Advanced Materials Interfaces, 8(10), 2002124.

[35] Xiao, J., Hou, X., Zhao, L., & Li, Y. (2016). A conductive ZnO: Ga/ZnO core-shell nanorod photoanode for photoelectrochemical water splitting. International Journal of Hydrogen Energy, 41(33), 14596-14604.

[36] Li, M., Tu, X., Wang, Y., Su, Y., Hu, J., Cai, B., ... & Zhang, Y. (2018). Highly enhanced visible-light-driven photoelectrochemical performance of ZnO-modified In2S3 nanosheet arrays by atomic layer deposition. Nano-micro letters, 10(3), 1-12.

[37] Xu, H., Chen, H., Chen, S., Wang, K., & Wang, X. (2021). Fabrication of In2O3/In2S3 heterostructures for enhanced photoelectrochemical performance. International Journal of Hydrogen Energy, 46(64), 32445-32454.

[38] Chai, H., Gao, L., Wang, P., Li, F., Hu, G., & Jin, J. (2022). In2S3/F-Fe2O3 type-II heterojunction bonded by interfacial SO for enhanced charge separation and transport in photoelectrochemical water oxidation. Applied Catalysis B: Environmental, 305, 121011.

[39] Saravanan, R., Srinivasan, N., & Subha, B. Effect of the sintering temperature on the microstructure and optical properties of ZnO ceramics. Materials Research Foundations, 7.
(此全文20260113後開放外部瀏覽)
01.pdf
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *