帳號:guest(3.144.202.167)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目勘誤回報
作者:劉育維
作者(英文):YU-WEI LIU
論文名稱:低閥值連續式室溫下運作之鈣鈦礦放大自發輻射
論文名稱(英文):Low-threshold and continuous-wave perovskite amplified spontaneous emission operating at room temperature
指導教授:賴建智
指導教授(英文):Chien-Chih Lai
口試委員:李明威
江海邦
馬遠榮
曾賢德
賴建智
口試委員(英文):Ming-Way Lee
Hai-Pang Chiang
Yuan-Ron Ma
Shien-Der Tzeng
Chien-Chih Lai
學位類別:碩士
校院名稱:國立東華大學
系所名稱:物理學系
學號:610814202
出版年(民國):109
畢業學年度:108
語文別:中文
論文頁數:55
關鍵詞:低閥值連續式鈣鈦礦放大自發輻射
關鍵詞(英文):Low-thresholdcontinuous-waveperovskiteamplified spontaneous emission
相關次數:
  • 推薦推薦:0
  • 點閱點閱:15
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:1
  • 收藏收藏:0
在近幾年來,鹵化物鈣鈦礦由於其優異的光電特性,在發光材料中已成為非常熱門的研究對象,但是儘管在低溫下實現了以連續波(continuous-wave,CW)激發的鈣鈦礦雷射,鈣鈦礦材料對水分的敏感性和低的熱穩定性仍然是研究和商業應用的障礙。在本研究中,我們以簡易的溶液製程合成基本鈣鈦礦材料甲基銨碘化鉛(methylammonium lead iodide,CH3NH3PbI3),以均勻的薄膜形式成長於以雷射加熱基座生長法(laser-heated pedestal growth,LHPG)所生長之釔鋁石榴石(yttrium aluminum garnet,YAG)晶體光纖表面。由於YAG晶體良好的導熱性能,我們成功的在室溫中以連續波雷射在激發功率低於1 μW時發現了放大自發輻射(amplified spontaneous emission,ASE)的現象。為了探討震盪腔與ASE之間的關係,我們以本實驗室提出之濕蝕刻技術,將YAG晶體光纖直徑縮減至30、20、10 μm,並於直徑10 μm之YAG晶體光纖樣品中得到了約10 nW之極低的閥值(threshold)。我們的研究為將來開發高效鈣鈦礦光纖雷射的可能更邁進了一大步。
In recent years, halide perovskites have become a very popular research object in luminescent materials due to the excellent photoelectric properties. Although perovskite laser pumped by continuous-wave (CW) has been achieved at low temperatures, the moisture sensitivity and low thermal stability of perovskite materials are still difficult to academic research and commercial applications. In this study, we synthesized the basic perovskite material, methylammonium lead iodide (CH3NH3PbI3), by a simple solution process, and grown it in the form of uniform thin film onto yttrium aluminum garnet (YAG) crystal fiber which was grown by laser-heated pedestal growth (LHPG). Due to the good thermal conductivity of YAG crystals, we successfully found amplified spontaneous emission (ASE) phenomenon with continuous-wave laser at room temperature when the excitation power is lower than 1 μW. In order to explore the relationship between the cavity and ASE, we reduced the diameter of YAG crystal fiber to 30, 20, and 10 μm by using the wet etching technology proposed by our laboratory, and obtained a very low threshold in the YAG crystal fiber sample with a diameter of 10 μm. Our research has taken a big step forward for the development of high-efficiency perovskite fiber lasers in the future.
第一章 緒論與文獻回顧 1
1-1 前言與研究動機 1
1-2 自發放大輻射(amplified spontaneous emission,ASE)原理與應用 3
1-3鈣鈦礦介紹 4
1-4 釔鋁石榴石介紹 6
1-4-1 YAG晶體光纖的製備方法 7
1-5 法布立-佩羅諧振腔(Fabry-Perot cavity)介紹 8
第二章 儀器分析與實驗方法 11
2-1 材料製作設備與方法 11
2-1-1 爐管式化學氣相蒸鍍儀(tube furnace chemical vapor deposition chamber) 11
2-1-2 YAG晶體光纖蝕刻 12
2-1-3 PbI2溶液配置 13
2-1-4 鈣鈦礦生長 14
2-2 分析儀器與原理 14
2-2 場發射掃描式電子顯微鏡(field-emission scanning electron microscopy,FESEM) 15
2-3 共軛焦雷射掃描式顯微鏡(laser scanning confocal microscope,LSCM)
16
第三章 實驗數據與分析 17
3-1 時間改變下蝕刻形貌之差異 17
3-2 鈣鈦礦量測 18
3-2-1 光學顯微鏡量測 18
3-2-2 2D螢光分佈量測 20
3-2-3 光致發光(photoluminescence,PL)光譜量測 21
3-2-4 螢光生命週期量測 25
3-2-5 1 μm光纖樣品量測 28
3-3 實驗模擬 30
第四章 結論 47
參考文獻 49

J. Wang, J. Dong, F. Lu, C Sun, Q. Zhang and N. Wang, Two-dimensional lead-free halide perovskite materials and devices. J. Mater. Chem. A, 2019, 7, 23563.
H. Tan, A. Jain, O. Voznyy, X. Lan, F. P., G. D. A. Fan, J. Z. Quintero-Bermudez, R. Yuan, M. Zhang, B. Zhao, Y. Fan, F. Li, P. Quan, L. N. Zhao, Y. Lu, Z. H. Yang, Z. Hoogland, S. Sargent, E. H., Efficient and Stable Solution-Processed Planar Perovskite Solar Cells via Contact Passivation. Science, 2017, 355, 722.
W. Yang, S. Park, B. W. Jung, E. H. Jeon, N. J. Kim, Y. C. Lee, D. U. Shin, S. S. Seo, J. Kim, E. K. Noh, J. H. Seok, S. I., Iodide Management in Formamidinium-Lead-Halide-Based Perovskite Layers for Efficient Solar Cells. Science, 2017, 356, 1376.
H. Dong, Wu, Z. Xi, J. Xu, X. Zuo, L. Lei, T. Zhao, X. Zhang, L. Hou, X. Jen, A. K. Y., Perovskite Photovoltaics: Pseudohalide-Induced Recrystallization Engineering for CH3NH3PbI3 Film and Its Application in Highly Efficient Inverted Planar Heterojunction Perovskite Solar Cells. Adv. Funct. Mater., 2018, 28, 1704836.
A. Rajagopal, K. Yao, A. Jen, K. Y., Toward Perovskite Solar Cell Commercialization: A Perspective and Research Roadmap Based on Interfacial Engineering. Adv. Mater., 2018, 30, 1800455.
K. Gao, L. Xiao, Y. Kan, B. Yang, J. Peng, Y. Cao, F. Liu, T. Russell, P. Peng, Solution-processed Bulk Heterojunction Solar Cells Based on Porphyrin Small Molecules with Very Low Energy Losses Comparable to Perovskite Solar Cells and High Quantum Efficiencies. J. Mater. Chem. C, 2016, 4, 3843.
W. S. Yang, J. H. Noh, N. J. Jeon, Y. C. Kim, S. Ryu, J. Seo and S. I. Seok., High-Performance Photovoltaic Perovskite Layers Fabricated Through Intramolecular Exchange. Science, 2015, 348, 1234.
Z. K. Tan, R. S. Moghaddam, M. L. Lai, P. Docampo, R. Higler, F. Deschler, M. Price, A. Sadhanala, L. M. Pazos, D. Credgington, F. Hanusch, T. Bein, H. J. Snaith and R. H. Friend., Bright Light-emitting Diodes Based on Organometal Halide Perovskite. Nat. Nanotechnol., 2014, 9, 687.
F. Deschler, M. Price, S. Pathak, L. E. Klintberg, D. D. Jarausch, R. Higler, S. Huttner, T. Leijtens, S. D. Stranks, H. J. Snaith, M. Atature, R. T. Phillips and R. H. Friend, High Photoluminescence Efficiency and Optically Pumped Lasing in Solution-Processed Mixed Halide Perovskite Semiconductors. J. Phys. Chem. Lett., 2014, 5, 1421.
S. D. Stranks, S. M. Wood, K. Wojciechowski, F. Deschler, M. Saliba, H. Khandelwal, J. B. Patel, S. J. Elston, L. M. Herz, M. B. Johnston, A. P. H. J. Schenning, M. G. Debije, M. K. Riede, S. M. Morris and H. J. Snaith, Enhanced Amplified Spontaneous Emission in Perovskites Using a Flexible Cholesteric Liquid Crystal Reflector. Nano Lett., 2015, 15, 4935.
F. Payne and J. Lacey, A Theoretical Analysis of Scattering Loss From Planar Optical Waveguides. Opt. Quantum Electron., 1994, 26, 977.
R. Kabe, H. Nakanotani, T. Sakanoue, M. Yahiro and C. Adachi, Effect of Molecular Morphology on Amplified Spontaneous Emission of Bis‐Styrylbenzene Derivatives. Adv. Mater., 2009, 21, 4034.
J. H. Im, I. H. Jang, N. Pellet, M. Gratzel and N. G. Park, Growth of CH3NH3PbI3 Cuboids With Controlled Size for High-Efficiency Perovskite Solar Cells. Nat. Nanotechnol., 2014, 9, 927.
T. J. S. Evans, A. Schlaus, Y. Fu, X. Zhong, T. L. Atallah, M. S. Spencer, L. E. Brus, S. Jin, X. Y. Zhu, Continuous-wave Lasing in Cesium Lead Bromide Perovskite Nanowires. Adv. Opt. Mater., 2018, 6, 1.
R. Su, C. Diederichs, J. Wang , T. C. H. Liew , J. Zhao , S. Liu , W. Xu , Z. Chen , Q. Xiong, Room-temperature Polariton Lasing in All-inorganic Perovskite Nanoplatelets. Nano Lett., 2017, 17, 3982.
Y. Jia, R. A. Kerner, A. J. Grede, A. N. Brigeman, B. P. Rand, and N. C. Giebink, Diode-pumped Organo-lead Halide Perovskite Lasing in a Metalclad Distributed Feedback Resonator. Nano Lett., 2016, 16, 4624.
M. Cadelano, V. Sarritzu, N. Sestu, D. Marongiu, F. Chen, R. P. R. Corpino, C. M. Carbonaro, F. Quochi, M. Saba, A. Mura, G. Bongiovanni, Can Trihalide Lead Perovskites Support Continuous Wave Lasing? Adv. Opt. Mater., 2015, 3, 1557.
Y. Jia, R. A. Kerner, A. J. Grede, B. P. Rand & N. C. Giebink, Continuouswave Lasing in an Organic–inorganic Lead Halide Perovskite Semiconductor. Nat. Photonics, 2017, 11, 784.
H. Yu, K. Ren, Q. Wu, J. Wang, J. Lin, Z. Wang, J. Xu, R. F. Oulton, S. Qu, P. Jin, Organic–inorganic Perovskite Plasmonic Nanowire Lasers with a Low Threshold and a Good Thermal Stability, Nanoscale, 2016, 8, 19536.
W. Zou, R. Li, S. Zhang, Y. Liu, N. Wang, Y. Cao, Y. Miao, M. Xu, Q. Guo, D. Di, L. Zhang, C. Yi, F. Gao, R. H. Friend, J. Wang & W. Huang, Minimising efficiency roll-off in high-brightness perovskite light-emitting diodes. Nat. Commun., 2018, 9, 608.
M. Yang, N. Wang, S. Zhang, W. Zou, Y. He, Y. Wei, M. Xu, J. Wang, and W. H. Reduced, Efficiency Roll-off and Enhanced Stability in Perovskite Light-emitting Diodes with Multiple Quantum Wells. J. Phys. Chem. Lett., 2018, 9, 2038.
K. M. Morozov, K. A. Ivanov, D. de S. Pereira, C. Menelaou, A. P. Monkman, G. Pozina and M. A. Kaliteevski, Revising of the Purcell Effect in Periodic Metal-dielectric Structures : the Role of Absorption, Sci. Rep., 2019, 9, 9604.
K. P. Whelm, P. Elsner, E. Berardesca, and H. I. Maibach, Bioengineering of the Skin: Skin Imaging & Analysis. CRC Press, 2006.
Y. L. Lai, The improvement of Mirau interferometer for the Mirau0based Full-field Optical Coherence Tomography. 碩士論文, 2016.
Y. J. Chen, A Novel TDM-PON Monitoring System Using the Modulated ASE Noise as the Light Sourse. 碩士論文, 2012.
W. S. Tsai, H. H. Lu, C. W. Liao, Y. C. Chi,Y. W. Chuang, G. L. Chen, Radio-on-PHS/VICS/ETC/SB DWDM Transport Systems, Opt. Tran., Switching, and Subsystems IV, 2006.
Y. Chen, L. Zhang, Y. Zhang, H. Gao & H. Yan Large-area Perovskite Solar Cells – a Review of Recent Progress and Issues. RSC Advances, 2018, 8, 10489.
A. Halder, R. Chulliyil, A. S. Subbiah, T. Khan, S. Chattoraj, A. Chowdhury & S. K. Sarkar, Pseudohalide (SCN–)-Doped MAPbI3 Perovskites: A Few Surprises. J. Phys. Chem. Lett., 2015, 6, 3483.
S. D. Stranks, S. M.Wood, K. Wojciechowski, F. Deschler, M. Saliba, H. Khandelwal, J. B. Patel, S. J. Elston, L. M. Herz, M. B. Johnston, Enhanced Amplified Spontaneous Emission in Perovskites Using a Flexible Cholesteric Liquid Crystal Reflector. Nano Lett. 2015, 15, 4935.
G. Xing, M. Nripan, S. S. Lim, N. Yantara, X. Liu, D. Sabba, M. Grätzel, S. Mhaisalkar, T. C. Sum, Low-Temperature Solution-Processed Wavelength-Tunable Perovskites for Lasing. Nat. Mater. 2014, 13, 476.
X. Wu, X. F. Jiang, X. Hu, D. F. Zhang, S. Li, X. Yao, W. Liu, H. L. Yip, Z. Tang, Q. H. Xu, Highly Stable Enhanced Near-infrared Amplified Spontaneous Emission in Solution-processed Perovskite Films by Employing Polymer and Gold Nanorods. Nanoscale, 2019, 11, 1959.
L. Qin, L. Lv, Y. Ning, C. Li, Q. Lu, L. Zhu, Y. Hu, Z. Lou, F. Teng, Y. Hou, Enhanced Amplified Spontaneous Emission from Morphology-controlled Organic–inorganic Halide Perovskite Films. RSC Adv. 2015, 5, 103674.
T. T. Ngo, I. Suarez, G. Antonicelli, D. Cortizo-Lacalle, J. P. Martinez-Pastor, A. Mateo-Alonso, I. Mora-Sero, Enhancement of the Performance of Perovskite Solar Cells, LEDs, and Optical Amplifiers by Anti-solvent Additive Deposition. Adv. Mater. 2017, 29, 1604056.
F. Yuan, Z. Wu, H. Dong, J. Xi, K. Xi, G. Divitini, B. Jiao, X. Hou, S. Wang, Q. Gong, High Stability and Ultralow Threshold Amplified Spontaneous Emission from Formamidinium Lead Halide Perovskite Films. J. Phys. Chem. C 2017, 121, 15318.
Y. Liu, J. Wang, L. Zhang, W. Liu, C. Wu, C. Liu, Z. Wu, L. Xiao, Z. Chen, and S. Wang, Exciton and Bi-exciton Mechanisms in Amplified Spontaneous Emission from CsPbBr3 Perovskite Thin Films, Biomed. Opt. Express, 2019, 27, 29124.
L. Zhang, F. Yuan, H. Dong, B. Jiao, W. Zhang, X. Hou, S. Wang, Q. Gong, Z. Wu, One-Step Co-Evaporation of All-Inorganic Perovskite Thin Films with Room-Temperature Ultralow Amplified Spontaneous Emission Threshold and Air Stability. ACS Appl. Mater. Interfaces, 2018, 10, 40661.
E. Lafalce, C. Zhang, Y. Zhai, D. Sun, Z. V. Vardeny, Enhanced Emissive and Lasing Characteristics of Nano-crystalline MAPbBr3 Films Grown Via Anti-solvent Precipitation. J. Appl. Phys. 2016, 120, 143101.
J. R. Harwell, G. L. Whitworth, G. A. Turnbull, I. D. W. Samuel, Green Perovskite Distributed Feedback Lasers. Sci. Rep. 2017, 7, 11727.
F. Krieg, S.T. Ochsenbein, S. Yakunin, S. Brinck, P. Aellen, A. Süess, B. Clerc, D. Guggisberg, O. Nazarenko, Y. Shynkarenko, et al. Colloidal CsPbX3 (X = Cl, Br, I) Nanocrystals 2.0: Zwitterionic Capping Ligands for Improved Durability and Stability. ACS Energy Lett. 2018, 3, 641.
S. Yakunin, L. Protesescu, F. Krieg, M. I. Bodnarchuk, G. Nedelcu, M. Humer, G. D. Luca, M. Fiebig, W. Heiss, M. V. Kovalenko, Low-Threshold Amplified Spontaneous Emission and Lasing From Colloidal Nanocrystals of Caesium Lead Halide Perovskites. Nature Com. 2015, 6, 8056.
S. A. Veldhuis, Y. K. E. Tay, A. Bruno, S. S. H. Dintakurti, S. Bhaumik, S. K. Muduli, M. Li, N. Mathews, T. C. Sum, S. G. Mhaisalkar, Benzyl Alcohol-treated CH3NH3PbBr3 Nanocrystals Exhibiting High Luminescence, Stability, and Ultralow Amplified Spontaneous Emission Thresholds. Nano Lett. 2017, 17, 7424.
L. Protesescu, S. Yakunin, S. Kumar, J. Bär, F. Bertolotti, N. Masciocchi, A. Guagliardi, M. Grotevent, I. Shorubalko, M. I. Bodnarchuk, et al. Dismantling the “Red Wall” of Colloidal Perovskites: Highly Luminescent Formamidinium and Formamidinium-Cesium Lead Iodide Nanocrystals. ACS Nano, 2017, 11, 3119.
P. Brenner, O. B. On, M. Jakoby, I. Allegro, B. S. Richards, U. W. Paetzold, I. A. Howard, J. Scheuer, U. Lemmer, Continuous Wave Amplified Spontaneous Emission in Phase-stable Lead Halide Perovskites, Nat. Commun. 2019, 10, 988.
A. Gharajeh, R. Haroldson, Z. Li, J. Moon, B. Balachandran, W. Hu, A. Zakhidov and Q. Gu, Continuous-wave Operation in Directly Patterned Perovskite Distributed Feedback Light Source at Room Temperature. Opt. Lett., 2018, 43, 611.
N. B. Angert, N. I. Borodin, V. M. Garmash, V. A. Zhitnyuk, A. G. Okhrimchuk, O. G. Siyuchenko, A. V. Shestakov, Lasing Due to Impurity Color Centers in Yttrium Aluminum Garnet Crystals at Wavelengths in the Range 1.35–1.45 μm, Soviet J. Quantum Electron., 1988, 18, 73.
H. Eilers, W. M. Dennis, W. M. Yen, S. Kuck, K. Peterman, G. Huber, W. Jia, Performance of a Cr: YAG Laser, IEEE J. Quantum Electron., 1993, 29, 9.
A. Sennaroglu, C. R. Pollock, H. Nathel, Continuous-wave Self-mode-locked Operation of a Femtosecond Cr^(4+):YAG laser, Opt. Lett., 1994, 19, 390.
J. F. Ready, Industrial Applications of Lasers, Book, 1997, 343.
Crystran company.https://www.crystran.co.uk/optical-materials/yttrium-aluminium-garnet-yag
H. Z. Wang, The Relation Study Between Material Structure and Transmission Efficiency on Cr^(4+):YAG Crystal Fiber by LHPG, 碩士論文, I-Shou University, 2008.
C. C. Lai, C. Y. Lo, T. H. Hsieh, W. S. Tsai, D. H. Nguyen, Y. R. Ma, Ligand-Driven and Full-Color-Tunable Fiber Source: Toward Next-Generation Clinic Fiber-Endoscope Tomography with Cellular Resolution, ACS Omega, 2016, 1, 552.
H. Austerlitz, Data Acquisition Techniques Using PCs (Second Edition), Book, 2003.
C. Miao, C. Zheng, O. Liang and Y. H. Xie, Chemical Vapor Deposition of Graphene, Physics and Applications of Graphene – Experiments, Book, 2011, 37.
P. E. J. Flewitt, R. K. Wild, Physical Methods for Materials Characterisation, IOP Publishing, Chapter 6, Bristol, 1994.
Digita ́lis Tanko ̈nyvta ́r, 7.2.Time-resolution of fluorescence.https://regi.tankonyvtar.hu/hu/tartalom/tamop412A/2011-0013_maroti_lasers_ in_biophysics/72_timeresolution_of_fluorescence.scorml
J. Ding, Z. Lian, Y. Li, S. Wang and Q. Yan, The Role of Surface Defects in Photoluminescence and Decay Dynamics of High-Quality Perovskite MAPbI3 Single Crystals, J. Phys. Chem. Lett. 2018, 9, 4221.
A. François, K. J. Rowland, S. V. Afshar, H. M. Henderson and T. M. Monro, Enhancing the Radiation Efficiency of Dye Doped Whispering Gallery Mode Microresonators, Opt. Express, 2013, 21, 22566.
(此全文未開放授權)
01.pdf
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *