帳號:guest(18.226.93.207)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目勘誤回報
作者:李偉正
作者(英文):Wei-Zheng Li
論文名稱:探討不同寬度金奈米顆粒薄膜的電傳輸特性
論文名稱(英文):Charge Transport in Different Widths of Gold Nanoparticle Film
指導教授:曾賢德
指導教授(英文):Shien-Der Tzeng
口試委員:李明威
江海邦
馬遠榮
賴建智
口試委員(英文):Ming-Way Lee
Hai-Pang Chiang
Yuan-Ron Ma
Chien-Chih Lai
學位類別:碩士
校院名稱:國立東華大學
系所名稱:物理學系
學號:610714212
出版年(民國):109
畢業學年度:108
語文別:中文
論文頁數:52
關鍵詞:金奈米顆粒薄膜電荷傳輸庫倫阻斷
關鍵詞(英文):Gold nanoparticle filmCharge transportCoulomb blockade
相關次數:
  • 推薦推薦:0
  • 點閱點閱:9
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:1
  • 收藏收藏:0
奈米顆粒薄膜的電荷傳輸性質主要透過穿隧的方式來進行,又因庫倫阻斷效應使電荷必須克服奈米顆粒的充電能。一維、二維奈米顆粒薄膜結構的集體電荷傳輸可視為一系列的穿隧效應與庫倫阻斷效應,其電流會隨電壓呈現冪次關係。文獻上較少針對薄膜寬度變化對傳輸特性做系統性的討論。本研究製作出不同寬度之金奈米顆粒薄膜並討論其傳輸特性之不同。
溫度於10 K時,不同寬度薄膜的電流-電壓(I-V)曲線有著相似的行為,可以明顯地觀察到庫倫阻斷區間。利用Arrhenius方程式分析與電阻隨溫度的變化,發現不同的樣品具有相似的充電能Ec~13 meV。由Middleton-Wingreen模型:I~(Vbias/Vt-1)^ζ,可估計臨界電壓及傳輸路徑的維度與薄膜寬度的關係。發現隨著薄膜寬度從200 nm增加至2.3 μm,α值從0.4減少至0.11,顯示在較寬的通道在路徑的選擇上較多,而較窄的則反之;其ζ值從2.5增加至3.7,表示在相同的電壓增量下將會有較多的電流通道被開啟,其傳輸網路有更多的蜿蜒與分歧。
The charge transport properties of nanoparticle films are mainly carried out through tunneling, and the charge must overcome the charging energy of nanoparticle due to the Coulomb blocking effect. The collective charge transfer of one-dimensional and two-dimensional nanoparticle film structures can be regarded as a series of tunneling and coulomb blocking effects, and its current-voltage(I-V) MW model could be described to I~(Vbias/Vt-1)^ζ. Rare literature discusses the charge transport influenced by the width of nanoparticle film. In this study, gold nanoparticle films with different widths were produced and the difference in transport characteristics was discussed. When the temperature is 10 K the Coulomb blockade regime can be clearly observed. The Arrhenius equation is used to analyze the temperature dependence of the zero bias resistance, and it is found that different samples have similar charging energy Ec~13 meV. The MW model to show the relationship between the threshold voltage and the dimension of the current path, Our results show that the threshold voltage will decrease as the film width increases, and the dimension of the current path will increase as the film width increases. It is presumed that the wider sample has more more transverse paths, and more winding branching network.
致謝 i
摘要 ii
Abstract iii
目錄 iv
圖目錄 vi
表目錄 vii
第一章 緒論 1
第二章 原理與文獻回顧 3
2.1單電子效應簡介 3
2.1.1單電子效應形成條件 4
2.1.2單電子效應相關文獻 8
2.2金屬奈米顆粒陣列之電荷傳輸 9
2.2.1 MW模型基本假設 9
2.2.2一維與二維奈米顆粒陣列電荷傳輸情形 11
2.2.3實驗分析金屬奈顆粒陣列的電荷傳輸 14
2.3研究動機 18
第三章 樣品製備 19
3.1金奈米顆粒製備 19
3.2金奈米顆粒表面修飾與純化 24
3.3電極基板製備 27
3.3.1光學微影製程 27
3.3.2電子束微影製程 29
3.3.3電極基板修飾分子膜 30
3.4不同寬度之金奈米薄膜製作 31
3.5實驗儀器架設 34
第四章 實驗結果與討論 35
4.1金奈米顆粒薄膜表面形貌分析 35
4.2不同溫度下I-V量測 37
4.3金奈米顆粒薄膜擬合MW模型結果 42
4.3.1 臨界電壓Vt與薄膜寬度關係 42
4.3.2 ζ與薄膜寬度關係 45
4.3.3 實驗結果與文獻討論 47
第五章 結論 49
參考資料 50

[1]S.Link and M. A. El-Sayed, “Spectral Properties and Relaxation Dynamics of Surface Plasmon Electronic Oscillations in Gold and Silver Nanodots and Nanorods”, J. Phys. Chem. B 103, 8410-8426 (1999).
[2]Amir Zabet-Khosousi,Paul-Emile Trudeau, Yoshinori Suganuma, Al-Amin Dhirani, and Bryan Statt, “Metal to insulator transition in films of molecularly linked gold nanoparticles”, Phys. Rev. Lett. 96, 156403 (2006).
[3]Durrani, Z. A. K.,” Single-Electron Devices and Circuits in Silicon” (Imperial College Press, London, 2009).
[4]陳啟東,物理雙月刊,26卷三期,2004年。
[5]杜磊、莊奕琪,電子工業出版社,2004年。
[6]B. Wang, X. Xiao, X. Huang, P. Sheng, “Single-electron tunneling study of two-dimensional gold clusters”, Appl. Phys. Lett. 77, 1179-1181 (2000).
[7]Bezryadin. A, Dekker. C., Schmid.G. “Electrostatic trapping of single conducting nanoparticles between nanoelectrodes”, Appl. Phys. Lett. 71, 1273-1275 (1997).
[8]A.A. Middleton, N. S. Wingreen, “Collective Transport in Arrays of Small Metallic Dots”, Phys. Rev. Lett. 71, 3198-3201 (1993).
[9]M. Kardar, G. Parisi, and Y.-C. Zhang,” Dynamic Scaling of Growing Interfaces”, Phys. Rev. Lett. 56, 889-892 (1986).
[10]K. Elteto, E.G. Antonyan, T.T. Nguyen, and H.M. Jaeger, “Model for the onset of transport in systems with distributed thresholds for conduction”, Phys. Rev. B 71, 064206 (2005).
[11]R. Parthasarathy, X. M. Lin, and H. M. Jaeger, “Electronic Transport in Metal Nanocrystal Arrays: The Effect of Structural Disorder on Scaling Behavior”, Phys. Rev. Lett. 87, 186807 (2001).
[12]K. Elteto, X.M. Lin and H.M. Jaeger, “Electronic transport in quasi-one-dimensional arrays of gold nanocrystals”, Phys. Rev. B 71, 205412 (2005).
[13]M. O. Blunt, M. Suvakov, F. Pulizzi, C. P. Martin, E. Pauliac-Vaujour, A. Stannard, A. W. Rushforth, B. Tadic, and P. Moriarty, “Charge Transport in Cellular Nanoparticle Networks: Meandering through Nanoscale Mazes”, Nano Lett. 7, 855-860 (2007).
[14]郭清葵,物理雙月刊,第23捲6期,614-624。
[15]J.W. Slot, H.J. Geuze, “A new method of preparing gold probes for multiple-labeling cytochemistry”, Eur. J. Cell. Biol. 38, 87-93 (1985).
[16]J.F. Zhai, Y.L. Wang, Y.M. Zhai, S.J. Dong, “Rapid fabrication of Au nanoparticle films with the aid of centrifugal force”, Nanotechnology 20, 055609 (2009).
[17]楊素卿,國立東華大學碩士論文,2010年。
[18]倪懿池,國立東華大學碩士論文,2010年。
[19]C.A. Neugebauer, and M.B. Webb, “Electronic conduction mechanism in ultrathin, evaporated metal films”, J. Appl. Phys. 33, 74 (1962).
[20]C.T. Black, C. B. Maurray, R. L. Sandstrom and S. Sun, “Spin dependent tunneling in self-assembled cobalt-nanocrystal superlattices”, Science, 290, 1131-1134 (2000).
[21]C. Duan, Y. Wang, J. Sun, C. Guan, S. Grunder, M. Mayor, L. Peng and J. Liao, “Controllability of the Coulomb charging energy in close-packed nanoparticle arrays”, Nanoscale, 5, 10258-10266 (2013).
[22]B. Laiktman, E. L. Wolf,” Tunneling time and effective capacitance for single electron tunneling”, Phys. Lett. A 139, 257-260 (1989).
[23]P. Beecher, A. J. Quinn, E. V. Shevchenko, H. Weller and G. Redmond, “Charge Transport in Weakly Coupled CoPt3 Nanocrystal Assemblies”, J. Phys. Chem. B 108, 9564-9567 (2004).
[24]A. Zabet-Khosousi and A. A. Dhirani, “Charge transport in nanoparticle assemblies “Chem. Rev. 108, 4072-4124 (2008).
[25]P. Wilson, J.K.Y. Ong, A. Prasad, and R.F. Saraf, “Quantitative Visualization of Topology and Morphing of Percolation Path in Nanoparticle Network Array Exhibiting Coulomb Blockade at Room Temperature” J. Phys. Chem. C 123, 19999-20005 (2019).
(此全文20250811後開放外部瀏覽)
01.pdf
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *